A Maple Application for Testing Self-Adjointness on Quantum Graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Maple Application for Testing Self-adjointness on Quantum Graphs

In this paper we consider linear ordinary elliptic differential operators with smooth coefficients on finite quantum graphs. We discuss criteria for the operator to be self-adjoint. This involves conditions on matrices representative of the boundary conditions at each vertex. The main point is the development of a Maple application to test these conditions.

متن کامل

application of upfc based on svpwm for power quality improvement

در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...

15 صفحه اول

Essential Self-adjointness in One-loop Quantum Cosmology

The quantization of closed cosmologies makes it necessary to study squared Dirac operators on closed intervals and the corresponding quantum amplitudes. This paper shows that the proof of essential self-adjointness of these second-order elliptic operators is related to Weyl’s limit point criterion, and to the properties of continuous potentials which are positive near zero and are bounded on th...

متن کامل

Essential self - adjointness

1. Cautionary example 2. Criterion for essential self-adjointness 3. Examples of essentially self-adjoint operators 4. Appendix: Friedrichs' canonical self-adjoint extensions 5. The following has been well understood for 70-120 years, or longer, naturally not in contemporary terminology. The differential operator T = d 2 dx 2 on L 2 [a, b] or L 2 (R) is a prototypical natural unbounded operator...

متن کامل

On Self-adjointness of a Schrödinger Operator on Differential Forms

Let M be a complete Riemannian manifold and let Ω•(M) denote the space of differential forms on M . Let d : Ω(M) → Ω(M) be the exterior differential operator and let ∆ = dd + dd be the Laplacian. We establish a sufficient condition for the Schrödinger operator H = ∆ + V (x) (where the potential V (x) : Ω(M) → Ω(M) is a zero order differential operator) to be self-adjoint. Our result generalizes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Undergraduate Research Online

سال: 2012

ISSN: 2327-7807

DOI: 10.1137/12s011490